Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li-Li Kong, Li-Hua Huo, Shan Gao* and Jing-Gui Zhao

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.114$
Data-to-parameter ratio $=18.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetrakis(μ-phenylacetato- $\left.\kappa^{2} O: O^{\prime}\right)$ bis[(N,N-dimethyl-formamide- κ O)copper(II)]

In the crystal structure of the title complex, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{4}-\right.$ $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}$], two independent dinuclear $\mathrm{Cu}^{\mathrm{II}}$ complex molecules, bridged by phenylacetate anions, are located on inversion centres. The $\mathrm{Cu} \cdots \mathrm{Cu}$ separations of 2.6414 (8) and 2.6261 (8) A suggest no bonding between the Cu atoms. The $\mathrm{Cu}^{\text {II }}$ ions exist in a square-pyramidal coordination environment, defined by one N, N-dimethylformamide and four phenylacetate O atoms.

Comment

The coordination chemistry of centrosymmetric dinuclear $\mathrm{Cu}^{\mathrm{II}}$ complexes bridged by carboxylates has been widely investigated (Ivanov et al., 1976; Kato \& Muto, 1988). In order to explore further the coordination behaviour of the $\mathrm{Cu}^{\mathrm{II}}$ ion, the title complex, (I), incorporating phenylacetate has been prepared and its crystal structure is reported here.

(I)

Two independent molecules of (I) are located on inversion centres. Similar bond distances and angles are observed in these molecules (Table 1). The $\mathrm{Cu}^{\text {II }}$ ions display approximate square-pyramidal coordination geometry, defined by four carboxylate O atoms of four phenylacetate ligands forming the basal plane and by the O atom of the N, N-dimethylformamide (DMF) molecule occupying the axial position. The $\mathrm{Cu}-\mathrm{O}$ (DMF) bond distances are significantly longer than the $\mathrm{Cu}-\mathrm{O}$ (carboxylate) bond distances (Table 1). Within the dinuclear complex molecules, the $\mathrm{Cu} \cdots \mathrm{Cu}$ separations are 2.6414 (8) and 2.6261 (8) \AA, comparable with the value of 2.641 (1) \AA found in $\left[\mathrm{Cu}_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{4}(\text { pyridine })_{2}\right]$ (Uekusa et al., 1989).

Experimental

$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(2 \mathrm{mmol})$ was dissolved in a dimethylformamide solution (10 ml) of phenylacetic acid (6 mmol). The mixture was

Received 30 September 2005 Accepted 10 October 2005 Online 15 October 2005
filtered and allowed to stand at room temperature. Blue prismatic crystals of (I) were obtained after 7 d . Analysis, calculated for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Cu}_{2}$: C 56.08, H 5.20, N 3.44%; found: C 56.11, H 5.21, N 3.56%.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{r}=813.84$
Monoclinic, $P 2_{1} / n$
$a=14.291(3) \AA$
$b=17.569(4) \AA$
$c=15.791(3) \AA$
$\beta=107.95(3)^{\circ}$
$V=3771.7(15) \AA^{\circ}$
$Z=4$

$$
D_{x}=1.433 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$M_{r}=813.84$
Monoclinic, $P 2_{1} / n$
Mo $K \alpha$ radiation
Cell parameters from 34692 reflections
$\theta=3.0-27.5^{\circ}$
$\mu=1.19 \mathrm{~mm}^{-1}$
$c=15.791$ (3) \AA
$T=295$ (2) K
$V=3771.7(15) \AA^{3}$
Prism, blue
$0.42 \times 0.31 \times 0.18 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.636, T_{\text {max }}=0.815$
35794 measured reflections

> 8596 independent reflections
> 6302 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.058$
> $\theta_{\max }=27.5^{\circ}$
> $h=-17 \rightarrow 18$
> $k=-22 \rightarrow 22$
> $l=-20 \rightarrow 20$

Refinement

Refinement on F^{2}

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0605 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.51 \mathrm{e}^{-3} \AA^{-3}$
> $\Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Cu1-O1	1.9611 (19)	Cu2-O5	1.9583 (16)
$\mathrm{Cu} 1-\mathrm{O} 2^{\text {i }}$	1.9802 (19)	$\mathrm{Cu} 2-\mathrm{O} 6^{\text {ii }}$	1.9719 (16)
$\mathrm{Cu} 1-\mathrm{O} 3$	1.9756 (17)	$\mathrm{Cu} 2-\mathrm{O} 7$	1.9529 (16)
$\mathrm{Cu} 1-\mathrm{O} 4^{\text {i }}$	1.9546 (17)	$\mathrm{Cu} 2-\mathrm{O} 8^{\text {ii }}$	1.9791 (17)
Cu1-O9	2.1907 (17)	Cu2-O10	2.1609 (17)
$\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {i }}$	2.6414 (8)	$\mathrm{Cu} 2-\mathrm{Cu} 2{ }^{\text {ii }}$	2.6261 (8)
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1$	88.65 (8)	$\mathrm{O} 7-\mathrm{Cu} 2-\mathrm{O} 5$	88.94 (8)
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 3$	167.94 (7)	$\mathrm{O} 7-\mathrm{Cu} 2-\mathrm{O} 6{ }^{\text {ii }}$	89.56 (8)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	90.33 (8)	$\mathrm{O} 5-\mathrm{Cu} 2-\mathrm{O}^{\text {ii }}$	168.28 (7)
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 2^{\text {i }}$	89.64 (8)	$\mathrm{O} 7-\mathrm{Cu} 2-\mathrm{O} 8{ }^{\text {ii }}$	168.51 (7)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2{ }^{\text {i }}$	168.10 (8)	$\mathrm{O} 5-\mathrm{Cu} 2-\mathrm{O}^{\text {ii }}$	89.94 (9)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	88.88 (8)	$\mathrm{O} 6^{\text {iii }}-\mathrm{Cu} 2-\mathrm{O} 8^{\text {ii }}$	89.22 (8)
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 9$	101.21 (7)	$\mathrm{O} 7-\mathrm{Cu} 2-\mathrm{O} 10$	98.75 (7)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 9$	101.28 (7)	$\mathrm{O} 5-\mathrm{Cu} 2-\mathrm{O} 10$	101.03 (7)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 9$	90.78 (7)	$\mathrm{O} 6{ }^{\text {ii }}-\mathrm{Cu} 2-\mathrm{O} 10$	90.69 (7)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 9$	90.60 (7)	$\mathrm{O} 8^{\mathrm{ii}}-\mathrm{Cu} 2-\mathrm{O} 10$	92.69 (7)

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+2,-y+1,-z+1$.
The methyl groups were allowed to rotate to fit the electron density $\left[\mathrm{C}-\mathrm{H}=0.96 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$. The other H atoms were positioned geometrically (aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$ and aliphatic $\mathrm{C}-\mathrm{H}=0.97 \AA$) and included in the refinement in the riding-model approximation, with $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Figure 1
The two independent molecules of (I), with 30% probability displacement ellipsoids. (For symmetry codes, see Table 1).

Data collection: RAPID AUTO (Rigaku, 1998); cell refinement: RAPID AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20101003), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (grant No. 1054 G036) and Heilongjiang University for supporting this study.

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Ivanov, V. I., Simonov, Y. A., Malinovskii, T. I., Milkova, L. N. \& Ablov, A. V. (1976). Koord. Khim. 2, 416-419.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kato, M. \& Muto, Y. (1988). Coord. Chem. Rev. 92, 45-83.
Rigaku (1998). RAPID AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Uekusa, H., Obha, S., Saito, Y., Kato, M., Tokii, T. \& Muto, T. (1989). Acta Cryst. C45, 377-380.

